
Stefan Baerisch, stbaer.com,
Virtual DjangoCon 2-6 June 2021

(A) SQL for Django

1

Image: Freepic Professional

http://stbaer.com

Some background

‣Using Python since ~ 2006
‣also Go, Rust, Java

‣Django since ~ 2017
‣PM / Business Analyst, Developer
‣Django is not my focus

2

Motivation for the talk
‣You can do (almost) everything you want to do with a
database in Django's ORM
‣You don't want to do (almost) everything you can in
Django's ORM
‣Using SQL with Django is possible and has benefits

3

ORM SQ

Django

ORM and SQL, again

4

Scenario ORM SQL

CRUD

Gathering
Object
Hierarchies

Analytic
Queries

Great Code / Data
Integration

Boilerplate per
Object

Some care and
checks required

Still mapping
efforts, may be
worth it

SQL-to-ORM
thinking required

SQL thinking
required

Working with the Django ORM

5

Example Database

6

Working with data - Django ORM use cases

7

Scenario Way to do it

CRUD

Gathering
Object
Hierarchies

Analytic
Queries

create(), get()/filter() / delete()

Attribute Access via Forein Keys()
select_related()

annotate() / aggregate() /Q / F ...

CRUD Operations

8

cust = m.Customer(firstname="Ex", lastname="Ample", discount=10)
cust.save()

cust = m.Customer.objects.filter(firstname='Ex').first()
cust.discount += 1
cust.save()

cust.delete()

Getting Specific Filters

9

r = m.Customer.objects. \
 filter(discount__gt=2, discount__lt=4). \
 values('lastname'). \
 order_by('discount')
q = r.query

'SELECT "app_customer"."lastname"
FROM "app_customer"
WHERE ("app_customer"."discount" > 2
AND "app_customer"."discount" < 4)
ORDER BY "app_customer"."discount" ASC'

The Q and F of complex (1/2)

10

r = m.Customer.objects. \
 filter(discount= F('discount') * F('discount'))
q = r.query

'SELECT "app_customer"."id",
"app_customer"."firstname",
"app_customer"."lastname",
"app_customer"."discount"
FROM "app_customer"
WHERE "app_customer"."discount" =
("app_customer"."discount" *
"app_customer"."discount")'

The Q and F of complex (2/2)

11

r = m.Customer.objects.filter(
 Q(discount__lt=7) | Q(discount__gt=12)
)

'SELECT "app_customer"."id",
"app_customer"."firstname",
"app_customer"."lastname", "app_customer"."discount"
FROM "app_customer" WHERE
("app_customer"."discount" < 7 OR
"app_customer"."discount" > 12)'

Using Annotations

12

r = m.Customer.objects. \
 filter(id__in=[1,3,6,10,45,12]). \
 annotate(doubled=F('discount') * 2)
q = r.query
q

'SELECT "app_customer"."id", "app_customer"."firstname",
"app_customer"."lastname", "app_customer"."discount",
("app_customer"."discount" * 2) AS "doubled" FROM "app_customer" WHERE
"app_customer"."id" IN (1, 3, 6, 10, 45, 12)'

Using Annotations with Joins

13

r = m.Customer.objects. \
 values('firstname', 'lastname'). \
 annotate(
 Count('orders'),
 Sum('orders__positions__product__price')
)
q = r.query
q

'SELECT "app_customer"."firstname", "app_customer"."lastname", COUNT("app_order"."id") AS "orders__count",
SUM("app_product"."price") AS "orders__positions__product__price__sum" FROM "app_customer" LEFT OUTER JOIN
"app_order" ON ("app_customer"."id" = "app_order"."customer_id") LEFT OUTER JOIN "app_orderposition" ON
("app_order"."id" = "app_orderposition"."order_id") LEFT OUTER JOIN "app_product" ON
("app_orderposition"."product_id" = "app_product"."id") GROUP BY "app_customer"."firstname",
"app_customer"."lastname"'

Aggregations

14

'SELECT AVG("app_customer"."discount") AS "avg",
MAX("app_customer"."discount") AS "max" FROM "app_customer" WHERE
"app_customer"."id" IN (1, 3, 6, 10, 45, 12)'

reset_queries()
r = m.Customer.objects. \
 filter(id__in=[1,3,6,10,45,12]).\
 aggregate(avg= Avg('discount'), max= Max('discount'))
q = connection.queries[0]['sql']
q

A Complex Example
r = m.Customer.objects. \
 values('lastname', 'discount'). \
 annotate(
 s_lastname=F('orders__sales_person__lastname'),
 s_commission=F('orders__sales_person__commission'),
 total=F('orders__customer__discount') + F('orders__sales_person__commission')
).filter(
 (Q(orders__fulfilled__range=('2019-09-01', '2019-12-31')) & Q(total__gt=15)) |
 (Q(orders__fulfilled__range=('2018-01-01', '2018-12-31')) & Q(total__gt=10))
)
q = r.query
q

15

'SELECT "app_customer"."lastname", "app_customer"."discount", "app_salesperson"."lastname" AS "s_lastname",
"app_salesperson"."commission" AS "s_commission", (T4."discount" + "app_salesperson"."commission") AS "total" FROM
"app_customer" LEFT OUTER JOIN "app_order" ON ("app_customer"."id" = "app_order"."customer_id") LEFT OUTER JOIN
"app_salesperson" ON ("app_order"."sales_person_id" = "app_salesperson"."id") LEFT OUTER JOIN "app_customer" T4 ON
("app_order"."customer_id" = T4."id") INNER JOIN "app_order" T5 ON ("app_customer"."id" = T5."customer_id") WHERE
((T5."fulfilled" BETWEEN 2019-09-01 00:00:00 AND 2019-12-31 00:00:00 AND (T4."discount" + "app_salesperson"."commission")
> 15) OR (T5."fulfilled" BETWEEN 2018-01-01 00:00:00 AND 2018-12-31 00:00:00 AND (T4."discount" +
"app_salesperson"."commission") > 10))'

Creating the N+1 query problem

16

reset_queries()
lines = []
orders = m.Order.objects.filter(created__range=('2019-09-01', '2019-12-31'))
for order in orders:
 sp = order.sales_person
 cu = order.customer
 lines.append(f"{sp.lastname} ({sp.commission}) / {cu.lastname} {cu.discount} ")
quer = connection.queries
qs = connection.queries

len(qs):2997

{'sql': 'SELECT "app_salesperson"."id", "app_salesperson"."firstname",
"app_salesperson"."lastname", "app_salesperson"."commission" FROM
"app_salesperson" WHERE "app_salesperson"."id" = 269 LIMIT 21', 'time':
'0.000'}, {'sql': 'SELECT "app_customer"."id", "app_customer"."firstname",
"app_customer"."lastname", "app_customer"."discount" FROM "app_customer"
WHERE "app_customer"."id" = 19 LIMIT 21', 'time': '0.000'}

Addressing the N+1 query problem

17

reset_queries()
lines = []
orders = m.Order.objects.select_related('sales_person','customer').\
 filter(created__range=('2019-09-01', '2019-12-31'))
for order in orders:
 sp = order.sales_person
 cu = order.customer
 lines.append(f"{sp.lastname} ({sp.commission}) / {cu.lastname} {cu.discount} ")
quer = connection.queries
qs = connection.queries

[{'sql': 'SELECT "app_order"."id", "app_order"."created", "app_order"."fulfilled",
"app_order"."sales_person_id", "app_order"."customer_id", "app_salesperson"."id",
"app_salesperson"."firstname", "app_salesperson"."lastname", "app_salesperson"."commission",
"app_customer"."id", "app_customer"."firstname", "app_customer"."lastname",
"app_customer"."discount" FROM "app_order" INNER JOIN "app_salesperson" ON
("app_order"."sales_person_id" = "app_salesperson"."id") INNER JOIN "app_customer" ON
("app_order"."customer_id" = "app_customer"."id") WHERE "app_order"."created" BETWEEN
\'2019-09-01 00:00:00\' AND \'2019-12-31 00:00:00\'', 'time': '0.001'}]

SQL Use Cases and Advantages

18

Everything works, so why use SQL?

‣Django's ORM gives us everything we need
‣CRUD operations
‣Aggregations and Analytics
‣Optimizations (getting only some fields, specify
dependent data)

‣So why use SQL at all?
‣Let's look at some potential advantages

19

Addressing the N+1 query problem with SQL

20

from django.db import connection
reset_queries()
lines = []

sql = """
select sp.lastname, sp.commission,cu.lastname,cu.discount
from app_order o
inner join app_customer cu on cu.id = o.customer_id
inner join app_salesperson sp on sp.id = o.sales_person_id
where o.created between '2019-09-01' AND '2019-12-31';
"""

with connection.cursor() as cursor:
 cursor.execute(sql)
 for row in cursor.fetchall():
 a = 1
 lines.append(f"{row[0]} ({row[1]}) / {row[2]} {row[3]} ")
qs = connection.queries

[{'sql': "\n select sp.lastname, sp.commission,cu.lastname,cu.discount\n from app_order o\n
inner join app_customer cu on cu.id = o.customer_id\n inner join app_salesperson sp on sp.id =
o.sales_person_id\n where o.created between '2019-09-01' AND '2019-12-31';\n ", 'time': '0.000'}]

Separation of Concerns

‣Consider your Database an
external service
‣Returned objects define the
interface
‣A Python wrapper and SQL are the
implementation

21

Python SQL

Easing Performance Analysis and Optimization

‣Database scaling (still) matters

22

Write Review
Queries

Optimize Write
SQL

Integrate
Python

vs

Readability
‣SQL can be verbose...
‣... but as a declarative language, it is not hard to read...
‣...and by structuring your queries, you can make it even more readable

23

with priced_orders as (
 select o.id as id, sum(ap.price) as sum
 from app_order o
 join app_orderposition od on o.id = od.order_id
 join app_product ap on ap.id = od.product_id
 group by ap.id
)

select sp.lastname,sum(sp.commission * po.sum / 100) as com
from app_order o
join priced_orders po on po.id = o.id
join app_salesperson sp on sp.id = o.sales_person_id
group by o.sales_person_id
order by 2 desc;

Writing Code
‣Do you like IDEs? Code Completion? Supported Refactorings?
‣IDEs have an easier time understanding your database then your Django
model

24

‣Also, if want to have exactly this SQL, writing is simpler than tuning

Commonality

‣Your non-Django team members and users may understand SQL better
than Django's ORM.
‣Business Analyst may provide you with queries they want in their
dashboard
‣And the JAVA team two offices over will understand what you do

25

SQL? SQL!

Finding Information
‣Django is well documented...
‣... but it is only one of many ORMs...
‣and there is still more googleable knowledge about SQL

26

SQLDjango

Combining SQL and Django

27

Best of both worlds: Getting Objects with Raw Queries

28

sql = "select * from app_customer where id = 102;"
raw_query_set = m.Customer.objects.raw(sql)
customer = raw_query_set[0]
customer.lastname

Getting Objects and Renaming Fields

29

sql = """
select
 1 as id,
 'hello' as firstname,
 'world' as lastname,
 10 as discount;
"""
raw_query_set = m.Customer.objects.raw(sql)
customer = raw_query_set[0]
a = customer

Getting Partial Objects

30

sql = """
select id, firstname from app_customer
where discount > 8;
"""
raw_query_set = m.Customer.objects.raw(sql)
customer = raw_query_set[0]
ln = customer.lastname

Raw SQL and Parameters

sql = """
select id, firstname from app_customer
where discount > %s
order by discount;
"""
raw_query_set = m.Customer.objects.raw(sql, [8])
customer = raw_query_set[0]
ln = customer.lastname

31

Some Caveat...

32

sql = """
select id, firstname from app_customer
where discount > %s
order by discount
limit 1;
"""
raw_query_set = m.Customer.objects.raw(sql, [8])
customer = raw_query_set[0]
ln = customer.lastname

Raw SQL in other Places
rsql = RawSQL(
 """
 select sum(a.quantify * ap.price) from app_customer c
 left join app_order ao on c.id = ao.customer_id
 left join app_orderposition a on ao.id = a.order_id
 left join app_product ap on ap.id = a.product_id
 where c.discount > 9
 group by c.id
 order by c.discount
 """,[]
)

r = m.Customer.objects.filter(discount__gt=9).order_by('discount')
r2 = r.annotate(tot = rsql)

33

Look, No Objects: Using Django's Database Connections

from django.db import connection
sql = "select * from app_customer where id = 102;"
with connection.cursor() as cursor:
 cursor.execute(sql)
 row = cursor.fetchone()

34

Bypassing Django - Why and How

35

import sqlite3
connection = sqlite3.connect(DBPATH)
cursor = connection.cursor()
cursor.executescript("""
begin;
insert into app_customer (firstname, lastname, discount)
values ('Ex', 'Ample', 10);
insert into app_customer (firstname, lastname, discount)
values ('John', 'Doe', 14);
commit;
""")
connection.close()

Drawback of SQL in Django

36

Drawback : Boilerplate Code

‣An ORM may be inefficient at runtime
‣No ORM may be inefficient at write time
‣Without an ORM, you will have to prepare
the data you pass into you views...

37

Drawback : Loss of Abstraction

‣Django helps to abstract from your database
‣If you go for SQL, you will need to think about
your DBMS's SQL dialect

38

Loss of Features

‣Saying 'No' to Django's ORM means we lose
features
‣Signals
‣Migrations
‣Admin?
‣...

39

Options

40

ORM RawSQL Django
Connection

Native
Connection

Django
Models

SQL DDL

DDL

DDM

Review: SQL, Django - How and Why

‣Use Django's ORM for Models and simple CRUD Operations
‣If you want objects and filters and annotate get to
complicated, give raw SQL a try.
‣If your organization already has the queries you need, don't
reinvent the wheel
‣If you don't want objects, directly use the Django connection
‣If you need different connection parameters, go for a native
connection

41

Thank You

42

